Showing posts with label Multi-Agent Systems. Show all posts
Showing posts with label Multi-Agent Systems. Show all posts

9.6.25

Google’s MASS Revolutionizes Multi-Agent AI by Automating Prompt and Topology Optimization

 Designing multi-agent AI systems—where several AI "agents" collaborate—has traditionally depended on manual tuning of prompt instructions and agent communication structures (topologies). Google AI, in partnership with Cambridge researchers, is aiming to change that with their new Multi-Agent System Search (MASS) framework. MASS brings automation to the design process, ensuring consistent performance gains across complex domains.


🧠 What MASS Actually Does

MASS performs a three-stage automated optimization that iteratively refines:

  1. Block-Level Prompt Tuning
    Fine-tunes individual agent prompts via local search—sharpening their roles (think “questioner”, “solver”).

  2. Topology Optimization
    Identifies the best agent interaction structure. It prunes and evaluates possible communication workflows to find the most impactful design.

  3. Workflow-Level Prompt Refinement
    Final tuning of prompts once the best network topology is set.

By alternating prompt and topology adjustments, MASS achieves optimization that surpasses previous methods which tackled only one dimension 


🏅 Why It Matters

  • Benchmarked Success: MASS-designed agent systems outperform AFlow and ADAS on challenging benchmarks like MATH, LiveCodeBench, and multi-hop question-answering 

  • Reduced Manual Overhead: Designers no longer need to trial-and-error their way through thousands of prompt-topology combinations.

  • Extended to Real-World Tasks: Whether for reasoning, coding, or decision-making, this framework is broadly applicable across domains.


💬 Community Reactions

Reddit’s r/machinelearningnews highlighted MASS’s leap beyond isolated prompt or topology tuning:

“Multi-Agent System Search (MASS) … reduces manual effort while achieving state‑of‑the‑art performance on tasks like reasoning, multi‑hop QA, and code generation.” linkedin.com

 


📘 Technical Deep Dive

Originating from a February 2025 paper by Zhou et al., MASS represents a methodological advance in agentic AI

  • Agents are modular: designed for distinct roles through prompts.

  • Topology defines agent communication patterns: linear chain, tree, ring, etc.

  • MASS explores both prompt and topology spaces, sequentially optimizing them across three stages.

  • Final systems demonstrate robustness not just in benchmarks but as a repeatable design methodology.


🚀 Wider Implications

  • Democratizing Agent Design: Non-experts in prompt engineering can deploy effective agent systems from pre-designed searches.

  • Adaptability: Potential for expanding MASS to dynamic, real-world settings like real-time planning and adaptive workflows.

  • Innovation Accelerator: Encourages research into auto-tuned multi-agent frameworks for fields like robotics, data pipelines, and interactive assistants.


🧭 Looking Ahead

As Google moves deeper into its “agentic era”—with initiatives like Project Mariner and Gemini's Agent Mode—MASS offers a scalable blueprint for future AS/AI applications. Expect to see frameworks that not only generate prompts but also self-optimize their agent networks for performance and efficiency.

19.5.25

AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications, and Challenges

 A recent study by researchers Ranjan Sapkota, Konstantinos I. Roumeliotis, and Manoj Karkee delves into the nuanced differences between AI Agents and Agentic AI, providing a structured taxonomy, application mapping, and an analysis of the challenges inherent to each paradigm. 

Defining AI Agents and Agentic AI

  • AI Agents: These are modular systems primarily driven by Large Language Models (LLMs) and Large Image Models (LIMs), designed for narrow, task-specific automation. They often rely on prompt engineering and tool integration to perform specific functions.

  • Agentic AI: Representing a paradigmatic shift, Agentic AI systems are characterized by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy. They move beyond isolated tasks to coordinated systems capable of complex decision-making processes.

Architectural Evolution

The transition from AI Agents to Agentic AI involves significant architectural enhancements:

  • AI Agents: Utilize core reasoning components like LLMs, augmented with tools to enhance functionality.

  • Agentic AI: Incorporate advanced architectural components that allow for higher levels of autonomy and coordination among multiple agents, enabling more sophisticated and context-aware operations.

Applications

  • AI Agents: Commonly applied in areas such as customer support, scheduling, and data summarization, where tasks are well-defined and require specific responses.

  • Agentic AI: Find applications in more complex domains like research automation, robotic coordination, and medical decision support, where tasks are dynamic and require adaptive, collaborative problem-solving.

Challenges and Proposed Solutions

Both paradigms face unique challenges:

  • AI Agents: Issues like hallucination and brittleness, where the system may produce inaccurate or nonsensical outputs.

  • Agentic AI: Challenges include emergent behavior and coordination failures among agents.

To address these, the study suggests solutions such as ReAct loops, Retrieval-Augmented Generation (RAG), orchestration layers, and causal modeling to enhance system robustness and explainability.


References

  1. Sapkota, R., Roumeliotis, K. I., & Karkee, M. (2025). AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges. arXiv preprint arXiv:2505.10468.

  Anthropic Enhances Claude Code with Support for Remote MCP Servers Anthropic has announced a significant upgrade to Claude Code , enablin...