Showing posts with label Agentic RAG. Show all posts
Showing posts with label Agentic RAG. Show all posts

7.7.25

ARAG puts a multi-agent brain inside your RAG stack — and Walmart’s numbers look eye-popping

 Retrieval-augmented generation (RAG) has become the go-to recipe for giving large language models real-world context, but most deployments still treat retrieval as a dumb, one-shot lookup. Researchers at Walmart Global Tech think that leaves serious money on the table — especially in e-commerce, where user intent shifts by the minute. Their new framework, ARAG (Agentic Retrieval-Augmented Generation), adds a four-agent reasoning layer on top of vanilla RAG and reports double-digit gains across every metric that matters.

Four specialists, one conversation

  1. User-Understanding Agent distills long-term history and the current session into a natural-language profile.

  2. NLI Agent performs sentence-level entailment to see whether each candidate item actually supports that intent.

  3. Context-Summary Agent compresses only the NLI-approved evidence into a focused prompt.

  4. Item-Ranker Agent fuses all signals and produces the final ranked list.

Each agent writes to — and reads from — a shared blackboard-style memory, so later agents can reason over earlier rationales rather than raw text alone.

How much better? Try 42 %

On three Amazon Review subsets (Clothing, Electronics, Home), ARAG beats both a recency heuristic and a strong cosine-similarity RAG baseline:

DatasetNDCG@5 ↑Hit@5 ↑
Clothing+42.1 %+35.5 %
Electronics+37.9 %+30.9 %
Home & Kitchen+25.6 %+22.7 %

An ablation test shows that yanking either the NLI or context-summary modules knocks as much as 14 points off NDCG, underlining how critical cross-agent reasoning is to the win.

Why it matters

  • Personalization that actually reasons. By turning retrieval and ranking into cooperative LLM agents, ARAG captures the nuance of why an item fits, not just whether embeddings are close.

  • No model surgery required. The team wraps any existing RAG stack; there’s no need to fine-tune the base LLM, making the upgrade cloud-budget friendly.

  • Explainability for free. Each agent logs its own JSON-structured evidence, giving product managers a breadcrumb trail for every recommendation.

The bigger picture

Agentic pipelines have taken off in code generation and web browsing; ARAG shows the same trick pays dividends in recommender systems, a multi-billion-dollar battleground where percent-level lifts translate into real revenue. Expect retailers and streaming platforms to test-drive multi-agent RAG as they chase post-cookie personalization.

Paper link: arXiv 2506.21931 (PDF)

16.5.25

Top 6 Agentic AI Design Patterns: Building Smarter, Autonomous AI Systems

As artificial intelligence continues to evolve, the shift from simple chatbot interfaces to truly autonomous, intelligent systems is becoming a reality. At the core of this transformation are agentic design patterns—reusable frameworks that help structure how AI agents plan, act, reflect, and collaborate.

These six design patterns are the backbone of today’s most advanced AI agent architectures, enabling smarter, more resilient systems.


1. ReAct Agent (Reasoning + Acting)

The ReAct pattern enables agents to alternate between reasoning through language and taking action via tools. Instead of passively responding to prompts, the agent breaks down tasks, reasons through steps, and uses external resources to achieve goals.

  • Key feature: Thinks aloud and takes actions iteratively.

  • Why it matters: Mimics human problem-solving and makes AI more interpretable and efficient.


2. CodeAct Agent

The CodeAct pattern focuses on enabling agents to write, execute, and debug code. This is especially useful for solving complex, technical problems or automating workflows that require logic and precision.

  • Key feature: Dynamically generates and runs code in a live coding environment.

  • Why it matters: Automates developer tasks and enables technical reasoning.


3. Modern Tool Use

This pattern teaches agents how to smartly select and utilize third-party tools (like APIs or internal services). The agent becomes a manager of digital resources, deciding when and how to delegate tasks to tools.

  • Key feature: Picks the right tools based on task needs.

  • Why it matters: Gives agents real-world utility without overcomplicating internal logic.


4. Self-Reflection

Self-reflection equips agents with a feedback loop. After completing a task or generating an answer, the agent evaluates the quality of its response, identifies potential errors, and revises accordingly.

  • Key feature: Checks and improves its own output.

  • Why it matters: Boosts reliability and encourages iterative learning.


5. Multi-Agent Workflow

Rather than a single monolithic agent, this pattern involves multiple specialized agents working together. Each one has a defined role (e.g., planner, coder, checker), and they communicate to solve problems collaboratively.

  • Key feature: Division of labor between expert agents.

  • Why it matters: Scales well for complex workflows and enhances performance.


6. Agentic RAG (Retrieval-Augmented Generation)

Agentic RAG combines external information retrieval with generative reasoning, memory, and tool use. It allows agents to pull in up-to-date or task-specific data to guide their decision-making and output.

  • Key feature: Combines context-retrieval with deep reasoning.

  • Why it matters: Provides grounded, accurate, and context-aware outputs.


Key Takeaway

These six agentic AI design patterns provide a strong foundation for building autonomous, context-aware systems that can reason, act, collaborate, and self-improve. As AI agents move deeper into industries from software development to customer service and beyond, these patterns will guide developers in designing robust, intelligent solutions that scale.

Whether you're building internal tools or next-generation AI applications, mastering these frameworks is essential for developing truly capable and autonomous agents.


References

  1. Marktechpost – “Top 6 Agentic AI Design Patterns”: https://aiagent.marktechpost.com/post/top-6-agentic-ai-design-patterns

  2. ReAct (Reasoning and Acting): https://arxiv.org/abs/2210.03629

  3. CodeAct examples (various GitHub and research projects; see pattern 2 details on link above)

  4. Agentic RAG concept: https://www.marktechpost.com/2024/02/15/openai-introduces-rag-chain-and-memory-management-using-gpt/

  5. Self-Reflection agent idea: https://arxiv.org/abs/2302.03432

  6. Multi-Agent Collaboration: https://arxiv.org/abs/2303.12712

 If large language models have one redeeming feature for safety researchers, it’s that many of them think out loud . Ask GPT-4o or Claude 3....