2.8.25

MetaStone-S1 makes “how long to think” a first-class dial—and it pays off

 Frontier models are learning to trade more inference compute for better answers. MetaStone-S1 turns that trend into a clean architecture: a Reflective Generative Form where the policy and a process reward model live in the same network, adding a light 53M-parameter scoring head instead of a separate, heavyweight judge. The scoring head is trained self-supervised from outcome rewards—no step-by-step human labels—so the system can generate multiple chains of thought and select the best one efficiently. 

Three “reasoning effort” modes, one model

Because the verifier is built-in, MetaStone-S1 exposes controllable thinking lengthslow, medium, high—implemented via different candidate counts (k = 2/8/32) at inference. That makes test-time scaling a product feature rather than a research trick. 

Benchmarks: o3-mini territory at 32B

Across AIME’24/’25 (math), LiveCodeBench (code), and C-Eval (Chinese reasoning), the 32B MetaStone-S1 variants lift accuracy over a strong 32B baseline and land comparable to OpenAI o3-mini (medium)—with the high mode leading math by a sizable margin. Example table slice (Pass@1): AIME’24 85.2, AIME’25 73.6, LiveCodeBench 64.2, C-Eval 89.7 for MetaStone-S1-32B-high vs. o3-mini-medium 79.6 / 74.8 / 67.4 / 75.9

At smaller scales, the 1.5B and 7B versions also beat peer open models (e.g., R1-Distill 7B/8B) on AIME and LiveCodeBench, showing the approach is not just a big-model hack. 

Why this matters

  • Unified policy+PRM = cheaper selection. Sharing the backbone removes a second giant model from the loop and still delivers strong external TTS gains. 

  • Label-free verifier training. The SPRM head learns step scoring from outcome signals, sidestepping costly, noisy process annotations. 

  • Production-ready knob. Teams can ship speed/quality dials (k=2/8/32) instead of maintaining separate models for different latency tiers. 

  • Open release. Code and checkpoints are public, inviting replication and adaptation. 

MetaStone-S1’s take-home: reasoning power isn’t only about bigger weights or longer chains—it’s about selecting the right trajectory at inference, with a verifier you can actually afford to run.

Paper link: arXiv 2507.01951 (PDF)

No comments:

 Google Research just unveiled MLE-STAR , a machine-learning engineering agent that treats model building like a guided search-and-refine lo...