Showing posts with label AIME 24. Show all posts
Showing posts with label AIME 24. Show all posts

12.8.25

GLM-4.5 wants to be the open-source workhorse for agents, reasoning, and code

 Zhipu AI just dropped GLM-4.5, a Mixture-of-Experts LLM built to juggle three hard modes at once: agentic tasks, deep reasoning, and real-world coding. The headline specs: 355B total parameters with 32B active per token, a 23-trillion-token training run, and a hybrid reasoning switch that flips between “think-out-loud” and terse answers based on task demands. There’s also a slimmer GLM-4.5-Air (106B/12B active) for teams who can’t babysit a mega-model. 

Why it stands out

  • ARC trifecta focus. Across 12 benchmarks, GLM-4.5 places #3 overall and #2 on agentic suites—with marquee scores like 91.0 on AIME’24, 64.2 on SWE-bench Verified, and 70.1 on TAU-Bench. It also reports 26.4 on BrowseComp for web agents, near OpenAI’s o4-mini-high in the authors’ runs. 

  • Parameter-efficient MoE. Compared to some giant peers, GLM-4.5 keeps active params modest while stacking deeper layers, 96 attention heads, partial RoPE, QK-Norm, and a built-in MTP layer for speculative decoding. 

  • Hybrid reasoning as a product feature. Both GLM-4.5 and Air support thinking (for complex tool use) and non-thinking (instant replies) modes from the same checkpoint. 

The training recipe (quick hits)

A two-stage pretraining + mid-training stack mixes high-quality web, multilingual, code, math/science, then adds repo-level code, synthetic reasoning, 128K-token long-context, and agent trajectories to push real software-engineering and planning skills. Post-training distills expert Reasoning, Agent, and General models into one hybrid generalist, followed by targeted RL (including a “pathology RL” cleanup pass). 

What you can actually download

Zhipu has published code, evals, and model cards on GitHub; weights are also listed on Hugging Face. The team pitches GLM-4.5 as agent-first and ships a simple eval harness to reproduce scores. 

Bottom line

Open-source has plenty of great single-skill models. GLM-4.5 is aiming for a different bullseye: one backbone that can browse, reason, and patch code without feeling second-tier. If the reported ARC numbers hold up in the wild, this could become the go-to open checkpoint for production-grade agents.

Paper link: arXiv 2508.06471 (PDF)

 Anthropic has expanded Claude Sonnet 4’s context window to a full 1,000,000 tokens, a five-fold jump that shifts what teams can do in a sin...