Showing posts with label FineLeanCorpus. Show all posts
Showing posts with label FineLeanCorpus. Show all posts

10.7.25

CriticLean makes the AI “grader” the hero of math formalization

 Automating the translation of plain-English math into Lean code has felt like grading your own exam: language models write a proof, a compiler checks syntax, and everyone hopes the semantics line up. CriticLean flips that script by training a dedicated critic model—dubbed CriticLeanGPT—that learns to catch logical slips the compiler can’t. Guided by reinforcement learning, that critic doesn’t just reject bad code; it drives an iterative rewrite loop that more than doubles end-to-end accuracy.

From passive judge to active coach

The team fine-tunes a lightweight Qwen backbone to score whether a Lean statement truly matches its natural-language prompt, then bakes those scores into a reward signal. Each failed attempt becomes a teaching moment, producing richer feedback than the usual “compiler error” one-liner. The critic also powers CriticLeanBench, a 500-item test set (half correct, half adversarially wrong) that shows CriticLeanGPT trouncing both open and closed-source baselines at spotting semantic mistakes.

Hard numbers: 38 % → 84 % accuracy

On a 50-problem slice of the Omni-MATH benchmark, a 7 B “Kimina-Autoformalizer” model alone solved just 38 % of tasks. A traditional compiler-feedback loop nudged that to 54 %. Swap in CriticLean’s RL-trained critic and the success rate soars to 84 %—a 30-point leap even seasoned theorem-prover veterans will notice.

A broader 500-problem stress test tells the same story: the multi-attempt CriticLean pipeline verified 52.8 % of statements under a 200-try cap, recovering forty extra points of yield that single-pass systems would toss out.

A new 285 k-problem corpus (and 36 k “diamond” stumpers)

Because the critic can certify semantic correctness without humans, the authors bootstrapped FineLeanCorpus, a 285 ,957-entry Lean dataset spanning 16 math domains with a flatter difficulty curve than the skewed Lean-Workbook previously used for fine-tuning. They also carved out a FineLeanCorpus-Diamond subset—36 k brutal problems meant to push future models beyond textbook algebra.

Why this matters

  • Reliability over compilation. Syntax is easy; semantics are king. CriticLean proves that investing compute in the grading phase pays bigger dividends than ever-bigger generators.

  • Plug-and-play RL recipe. The critic-guided loop is model-agnostic and could supervise any auto-formalizer—Lean, Isabelle, even Coq.

  • Dataset flywheel. With FineLeanCorpus open-sourced, researchers finally have a large, semantically vetted playground instead of noisy web scrapes.

Whether you’re chasing fully automated theorem proving or just want ChatGPT to stop hallucinating Lean syntax, CriticLean’s message is clear: the smartest way forward is to teach your models how to critique themselves.

Paper link: arXiv 2507.06181 (PDF)

 Large language models have learned to call external tools, but in computer vision they still walk a narrow, hand-coded path: crop the image...