Showing posts with label No Code AI. Show all posts
Showing posts with label No Code AI. Show all posts

6.5.25

🚀 IBM’s Vision: Over a Billion AI-Powered Applications Are Coming

 IBM is making a bold prediction: over a billion new applications will be built using generative AI in the coming years. To support this massive wave of innovation, the company is rolling out a suite of agentic AI tools designed to help businesses go from AI experimentation to enterprise-grade deployment—with real ROI.

“AI is one of the unique technologies that can hit at the intersection of productivity, cost savings and revenue scaling.”
Arvind Krishna, IBM CEO


🧩 What IBM Just Announced in Agentic AI

IBM’s latest launch introduces a full ecosystem for building, deploying, and scaling AI agents:

  • AI Agent Catalog: A discovery hub for pre-built agents.

  • Agent Connect: Enables third-party agents to integrate with watsonx Orchestrate.

  • Domain Templates: Preconfigured agents for sales, procurement, and HR.

  • No-Code Agent Builder: Empowering business users with zero coding skills.

  • Agent Developer Toolkit: For technical teams to build more customized workflows.

  • Multi-Agent Orchestrator: Supports agent-to-agent collaboration.

  • Agent Ops (Private Preview): Brings telemetry and observability into play.


🏢 From AI Demos to Business Outcomes

IBM acknowledges that while enterprises are excited about AI, only 25% of them see the ROI they expect. Major barriers include:

  • Siloed data systems

  • Hybrid infrastructure

  • Lack of integration between apps

  • Security and compliance concerns

Now, enterprises are pivoting away from isolated AI experiments and asking a new question: “Where’s the business value?”


🤖 What Sets IBM’s Agentic Approach Apart

IBM’s answer is watsonx Orchestrate—a platform that integrates internal and external agent frameworks (like Langchain, Crew AI, and even Google’s Agent2Agent) with multi-agent capabilities and governance. Their tech supports the emerging Model Context Protocol (MCP) to ensure interoperability.

“We want you to integrate your agents, regardless of whatever framework you’ve built it in.”
Ritika Gunnar, GM of Data & AI, IBM

Key differentiators:

  • Open interoperability with external tools

  • Built-in security, trust, and governance

  • Agent observability with enterprise-grade metrics

  • Support for hybrid cloud infrastructures


📊 Real-World Results: From HR to Procurement

IBM is already using its own agentic AI to streamline operations:

  • 94% of HR requests at IBM are handled by AI agents.

  • Procurement processing times have been reduced by up to 70%.

  • Partners like Ernst & Young are using IBM’s tools to develop tax platforms.


💡 What Enterprises Should Do Next

For organizations serious about integrating AI at scale, IBM’s roadmap is a strategic blueprint. But success with agentic AI requires thoughtful planning around:

  1. Integration with current enterprise systems

  2. 🔒 Security & governance to ensure responsible use

  3. ⚖️ Balance between automation and predictability

  4. 📈 ROI tracking for all agent activities


🧭 Final Thoughts

Agentic AI isn’t just a buzzword—it’s a framework for real business transformation. IBM is positioning itself as the enterprise leader for this new era, not just by offering tools, but by defining the open ecosystem and standards that other vendors can plug into.

If the future is agentic, IBM wants to be the enterprise backbone powering it.

  Anthropic Enhances Claude Code with Support for Remote MCP Servers Anthropic has announced a significant upgrade to Claude Code , enablin...