Showing posts with label vector databases. Show all posts
Showing posts with label vector databases. Show all posts

21.7.25

Mirix: A Modular Memory Layer that Gives AI Agents Long-Term Recall and Personalized Reasoning

 

1 | Why “Memory” Is the Next AI Bottleneck

Large-language-model agents excel at single-turn answers, but forget everything once the context window scrolls out of sight. That results in repetitive conversations, lost project state, and brittle multi-step plans. Mirix, introduced by researchers from Carnegie Mellon and Tsinghua University, tackles the problem with a drop-in, modular memory layer that any agent framework (LangGraph, Autogen, IBM MCP, etc.) can call.


2 | How Mirix Works under the Hood

LayerPurposeDefault Tech Stack
IngestorsCapture raw events (chat turns, tool outputs, sensors).Web-hooks, Kafka, Postgres logical decode
CanonicalizerConvert heterogeneous events to a common MemoryEvent schema with type, timestamp, and embeddings.Pydantic, OpenAI embeddings-3-small
Memory StoresPluggable persistence engines. Ship with: • VectorDB (FAISS / Milvus) • Knowledge Graph (Neo4j) • Document Store (Weaviate hybrid).Drivers for each
RetrieversRoute agent queries to the right store; merge and de-dupe results; compress into 2-3 k tokens.Hybrid BM25 + vector; Rank-fusion
ReasonersOptional small models that label sentiment, importance, or user identity to prioritize what is stored or surfaced.DistilRoBERTa sentiment, MiniLM ranker
Key insight: memory need not live in a single DB; Mirix treats it as an orchestrated ensemble of stores, each optimised for a particular signal (facts vs. tasks vs. social cues).

3 | What It Enables

CapabilityExample
Long-Horizon PlanningA code-review agent tracks open pull-requests and test failures for weeks, not hours.
True PersonalizationA tutoring bot recalls a student’s weak areas and preferred explanations.
Contextual Tool UseAn enterprise helper chooses between Jira, Confluence, or GitLab based on past success rates with the same user.

Benchmarks on WikiChat-Memory (multi-episode conversations) show 58 % fewer repetitions vs. vanilla RAG and 3.4 × higher success on 15-step task chains.

4 | Plugging Mirix into an Existing Agent


from mirix.memory import MemoryClient
from agentic import Agent mem = MemoryClient( stores=[ "faiss://embeddings", "neo4j://graph", "weaviate://docs" ] ) agent = Agent(llm="mistral-small-3.2", memory=mem) response = agent.chat("Where did we leave the migration script last week?") print(response)

The memory layer runs async, so ingest and retrieval add <50 ms latency, even with three stores in parallel.


5 | Governance & Cost Controls

  • Policy Filters: PII redaction rules determine what is persisted.

  • TTL & Eviction: Events expire after a configurable horizon (default 90 days) or when embedding budget is hit.

  • Audit Log: Every retrieval is stamped for compliance, easing SOC 2 / GDPR audits.


6 | Limitations & Roadmap

  • Cold-start: Until enough signal accumulates, Mirix falls back to generic prompts.

  • Cross-user Contamination: Requires careful namespace isolation in multi-tenant deployments.

  • Upcoming: Graph-based reasoning (path-finding across memory) and a “Memory-as-Service” managed version on Azure.


Final Takeaway

Mirix turns stateless LLM calls into stateful, personalised experiences—without locking you into a single database or vendor. If your chatbot forgets what happened yesterday or your autonomous agent loses track of a multi-day workflow, Mirix may be the missing memory you need.

Oracle and Google Cloud have expanded their partnership so Oracle customers can tap Google’s latest Gemini family directly from Oracle Cloud...